Chapter 7 Answers

Practice 7-1

1. (1,2) **2.** (4,3) **3.** no solution **4.** (-1,3) **5.** (7,4) **6.** infinitely many solutions **7.** (-5,2) **8.** no solution **9.** (-1,-1) **10.** (0,-3) **11.** (6,6) **12.** (-2,-4) **13.** no solution **14.** (-3,5) **15.** (7,11) **16.** infinitely many solutions **17.** (8,7) **18.** (-2,-2) **19.** (5,6) **20.** (1,-2) **21.** (5,4) **22.** (-3,3) **23.** no solution **24.** (0,0) **25.** $\left(\frac{1}{2},\frac{1}{2}\right)$ **26.** $\left(\frac{3}{2},\frac{3}{2}\right)$ **27.** $\left(-\frac{1}{2},0\right)$ **28.** $\left(-4,-2\frac{1}{2}\right)$ **29.** (13,19) **30.** (8,22) **31.** (18,16) **32.** no solution

29. (13, 19) **30.** (8, 22) **31.** (18, 16) **32.** no solution **33.** (25, -30) **34.** (0, -10) **35.** (40, 30) **36.** (28, 14) **37.** no solution **38.** (36, 42) **39.** (16, 24) **40.** (18, -8) **41.** (-1.5, -2.25) **42.** (-2, -1) **43.** (1.5, -2.5)

Practice 7-2

1. (1,1) **2.** (2,6) **3.** (5,5) **4.** (-3,2) **5.** (0.6,8) **6.** (7,4) **7.** (5,-2) **8.** infinitely many solutions **9.** (100,50) **10.** no solution **11.** (1,9) **12.** (-2,-3) **13.** infinitely many solutions **14.** no solution **15.** (1,-2) **16.** (-2,-2) **17.** no solution **18.** infinitely many solutions **19.** (4,8) **20.** (2,-2) **21.** no solution **22.** (-3,0) **23.** (0,-1) **24.** infinitely many solutions **25.** $\left(3,-\frac{2}{3}\right)$ **26.** (1.5,3.6) **27.** (6.7,2.4) **28.** infinitely many solutions **29.** (13,11) **30.** no solution **31.** (10.5,8.2) **32.** (-6,-24) **33.** infinitely many solutions **34.** (28,-36) **35.** no solution **36.** (-18,-30) **37.** 88 cones **38.** paint: \$17/gal, brush: \$5.50

Practice 7-3

1. (1,3) **2.** (4,8) **3.** (7,6) **4.** (2,-1) **5.** (2,0) **6.** $\left(\frac{1}{2},2\right)$ **7.** (2,-2) **8.** (6,-1) **9.** (18,12) **10.** (3,6) **11.** (-1,5) **12.** (0,2) **13.** (5,7) **14.** (-1,-3) **15.** (0,0) **16.** $\left(4,-\frac{1}{3}\right)$ **17.** (8,7) **18.** (2,6) **19.** (4,11) **20.** (3,9) **21.** (11,7) **22.** (8,-3) **23.** (7,-3) **24.** (0,8) **25.** (-1,2) **26.** (1,6) **27.** (8,-1) **28.** $\left(\frac{3}{2},3\right)$ **29.** (4,-3) **30.** (7,-9) **31.** (4,3)

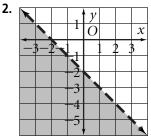
32. (-7,11) **33.** (9,2) **34.** (6,13) **35.** $\left(-3,\frac{2}{3}\right)$ **36.** (1,1) **37.** (2,5) **38.** (8,1) **39.** (10,-3) **40.** (7,-7)

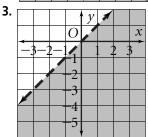
41. (8,8) **42.** (2,3) **43.** (9,7) **44.** (6,11) **45.** $\left(-\frac{1}{9},1\right)$

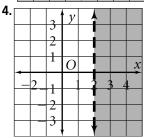
46. shirts: \$7.50; pants: \$18.50 **47.** 20 cherry pies; 16 apple pies

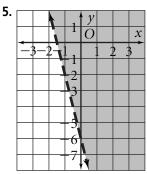
Practice 7-4

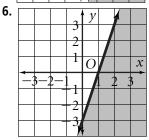
1. 30 2-pt; 10 4-pt **2.** 15 offices **3.** \$20; \$15

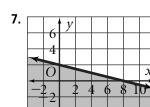

4. 2.5 mi/h; 0.5 mi/h **5.** 150 min/wk; 100 min/wk

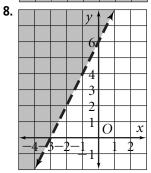

6. 89 T-shirts **7.** 160 mi/h, 10 mi/h **8.** \$2.50; \$1.50

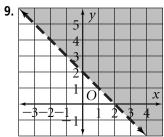

9. 330 spaces; 120 spaces **10.** 37.5 m/min; 12.5 m/min

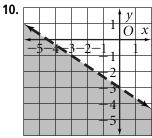

Practice 7-5

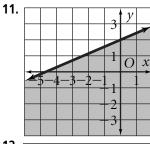

1. $\frac{1}{O}$ $\frac{y}{X}$ $\frac{-3-2-1}{2}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{3}$ $\frac{3}{3$

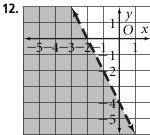


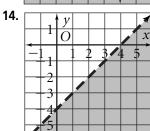


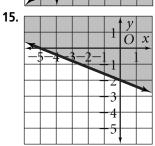


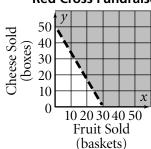




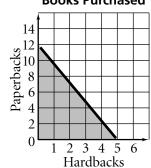






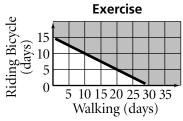


16a. 5x + 3y > 150

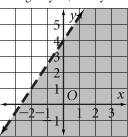

16b. Red Cross Fundraiser

16c. Answers may vary. The solutions are all of the coordinates of the points that are both positive integers within the shaded region. Samples: 20 fruit baskets and 20 cheese boxes; 25 fruit baskets and 10 cheese boxes

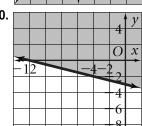
17a. $12x + 5y \le 60$


17b. Books Purchased

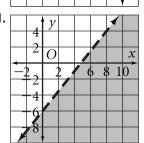
17c. Answers may vary. The solutions are all of the coordinates of the points that are both positive integers within the shaded region or on the boundary line. Samples: 5 hardbacks and no paperbacks; 3 hardbacks and 2 paperbacks

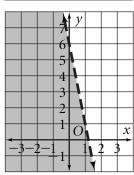

18a. $5x + 10y \ge 150$

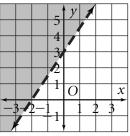
18b.

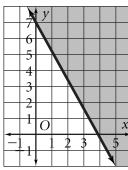


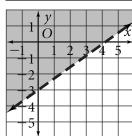
18c. Answers may vary. Samples: 10 days walking and 11 days riding bicycle, 12 days walking and 10 days riding bicycle

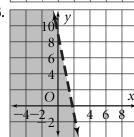

19.

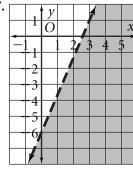

20.

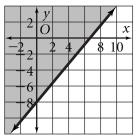

21.

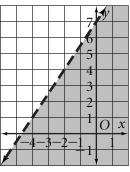

22.

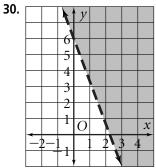

23.


24.

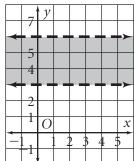

25.


26.

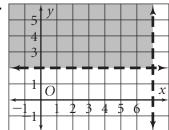

27.

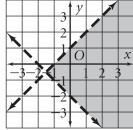


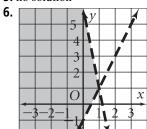
28.

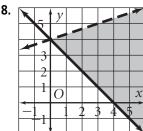


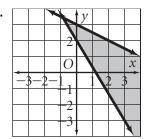
29.

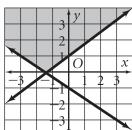


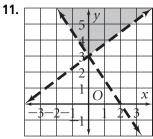

Practice 7-6


2.


3. no solution

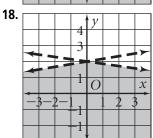

5. no solution


7. no solution



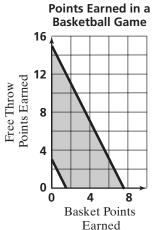
9.

10.



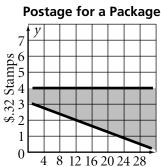
13. no solution

15. no solution


16. no solution

17. 5 y 3 2 2 3 1 1 O x 3 3 1 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 1 O x 5 2 3 1 O x

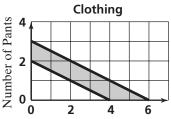
19a. $2x + y \ge 3$; $2x + y \le 15$


19b.

19c. Answers may vary. The solutions are all of the coordinates of the points that are both positive integers within the shaded region or on the boundary lines. Sample: 4 baskets and 5 free throws

20a. $3x + 32y \ge 100; y \le 4$

20b.

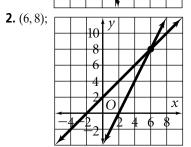


\$.03 Stamps

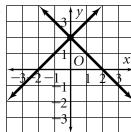
20c. Answers may vary. The solutions are all of the coordinates of the points that are both positive integers within the shaded region or on the boundary lines. Sample: 4 3-cent stamps and 3 32-cent stamps

21a. $10x + 20y \ge 40$; $10x + 20y \le 60$

21b.



Number of T-shirts


21c. Answers may vary. The solutions are all of the coordinates of the points that are both positive integers within the shaded region or on the boundary lines. Samples; 3 T-shirts and 1 pair of pants, 1 T-shirt and 2 pairs of pants.

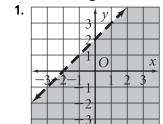
Reteaching 7-1

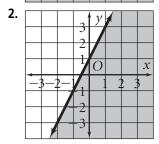
1. (2, 8); 10 y 8 6 4 2 x

4. no solution **5.** infinite number of solutions **6.** (3,0) **7.** (-1,-4) **8.** (-2,-7) **9.** no solution

Reteaching 7-2

1. (4,10) **2.** (-12,-16) **3.** (-1,1) **4.** (1.5,1) **5.** (2,-1) **6.** (3,0.5) **7.** (-2,-1) **8.** no solution **9.** infinitely many solutions

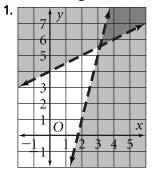

Reteaching 7-3

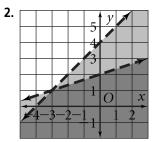

1.
$$\left(-\frac{4}{3}, 2\right)$$
 2. $(6, -4)$ **3.** $(-1, 1)$

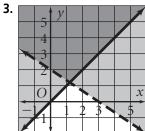
Reteaching 7-4

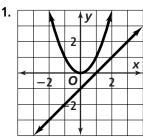

1. 5x + 4y = 7, 4x + 4y = 6; \$1.00, \$.50; Elimination is easiest since the equations can be written in the form Ax + By = C and the values of B are the same. **2.** 82 - 5x = y, 37 - 2x = y; \$15.00, \$7.00; Use substitution since the equations are in y = mx + b form.

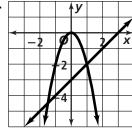
Reteaching 7-5



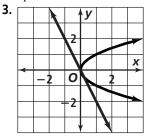



3.


Reteaching 7-6



Enrichment 7-1



no intersection

2 points of intersection

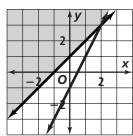
2 points of intersection

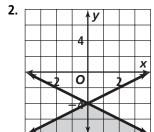
Enrichment 7-2

1.
$$(-3, -8, -5)$$
 2. $(-1, 3, 1)$ **3.** $\left(3, 2, \frac{1}{2}\right)$ **4.** $\left(-4, \frac{3}{4}, 0\right)$

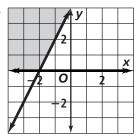
5.
$$\left(\frac{1}{2}, \frac{15}{2}, 4\right)$$
 6. $(4, 3, -2)$

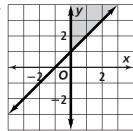
Enrichment 7-3

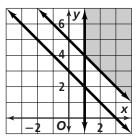

1. (-12, 11) **2.** (2, 5) **3.**
$$\left(\frac{67}{22}, \frac{19}{11}\right)$$
 4. $\left(\frac{46}{9}, \frac{29}{9}\right)$

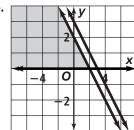

Enrichment 7-4

1. 270 mi/h; **2.** 170 mi/h; **3.** 50 mi/h

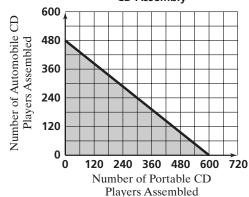

Enrichment 7-5




3.


4.

5.



6.

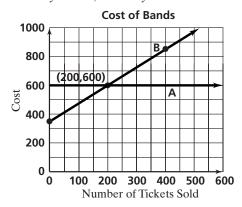
7.
$$x \ge 0, y \ge 0, 4x + 5y \le 2400$$

CD Assembly

Enrichment 7-6

1.
$$x \le 0; y < 5; y \ge -x$$

2.
$$y \le 2x$$
; $y \le 4$; $y \ge -3$; $y \ge 2x - 8$


3.
$$y \le x + 4$$
; $y > x - 4$; $y \le -x + 8$; $y \ge 0$; $x \ge 0$

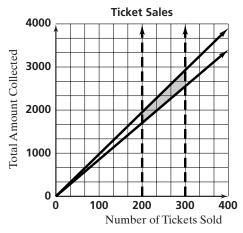
4.
$$x > -1$$
; $y \ge \frac{1}{2}x - 2$; $y \le -x + 4$

Chapter Project

Activity 1: Graphing

Let y represent the cost of each band when x tickets are sold. Band A: y = 600; Band B: y = 350 + 1.25x

Activity 2: Calculating

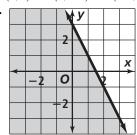

fixed cost: \$150; cost per person served: \$6

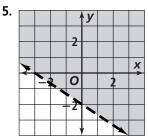
Activity 3: Writing

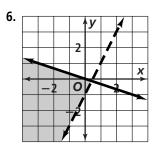
For 200 people: cost of Band A: \$600, cost of Band B: \$600, select either band, cost of caterer: \$1350, total cost: \$1950, cost per ticket to cover expenses: \$9.75; For 300 people: cost of Band A: \$600, cost of Band B: \$725, select Band A, cost of caterer: \$1950, total cost: \$2550, cost per ticket to cover expenses: \$8.50

Activity 4: Graphing

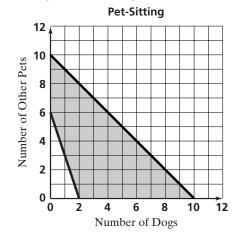
 $\$8.50; y = 8.50x; y \ge 8.50x; \$9.75; y = 9.75x; y \le 9.75x$

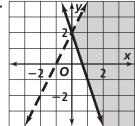


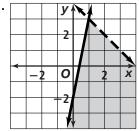

✓ Checkpoint Quiz 1

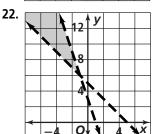

1. (3, -1) **2.** (-2, -1) **3.** (-4, 0) **4.** (5, 1) **5.** (1, 3) **6.** (-1, -1) **7.** (4, 1) **8.** (3, 2) **9.** (1, 2) **10.** 246 acres of wheat and 184 acres of corn **11.** 40 ft

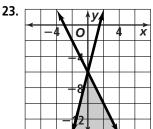
✓ Checkpoint Quiz 2


1. (0,8) **2.** (3,-2) **3.** (-3,-2)

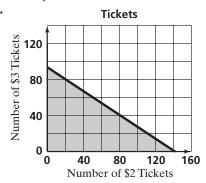

7. n + q = 25, 5n + 25q = 385; 12 nickels, 13 quarters **8.** $x + y \le 10; 15x + 5y \ge 30$


Chapter Test, Form A


1. (-2,3) **2.** (-3,-3) **3.** one **4.** one **5.** one **6.** infinitely many **7.** one **8.** none **9.** (-2,7) **10.** (-2,-11) **11.** (-21,-10) **12.** (4,1) **13.** (-1,4) **14.** (1,2) **15.** \$6; \$2 **16.** 63 string instruments; 28 wind instruments **17.** 625 loaves **18.** D **19.** Answers may vary. Sample: The lines would share no common points; therefore, the system would have no solution.


20.

21.



24. Check students' work.

25a.
$$2x + 3y \le 282$$

25b.

25c. 141 tickets **25d.** 94 tickets

26a.
$$2x + 2y \le 500; x \le 100$$

26b.

26c. Answers may vary. The solutions are all of the coordinates of the points within the shaded region or on its boundary line. Samples: width of 50 ft and length of 100 ft; width of 100 ft and length of 150 ft

27a.
$$x + y = 101$$

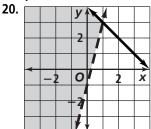
$$0.22x + 0.08y = 0.12 (101)$$

27b. 29 mL of 22% acid solution, 72 mL of 8% acid solution

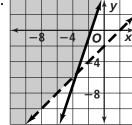
28a.
$$x + y = 22$$

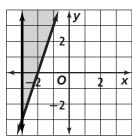
$$9x + 12y = 219$$

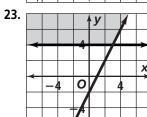
28b. 15 rolls of 24-exposure, 7 rolls of 36-exposure film


Chapter Test, Form B

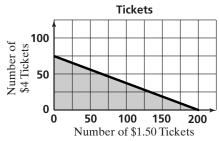
1. (-2,5) **2.** (4,-6) **3.** one **4.** one **5.** none **6.** one **7.** infinitely many **8.** one **9.** (-1, -2) **10.** (-4, -3)


11. (1, 2) **12.** (7, 3) **13.** (-6, 4) **14.** (3, 0) **15.** \$5; \$1


16. 49 cars; 35 trucks **17.** 10 performances **18.** Answers may vary. Sample: First graph each inequality, drawing a solid line for a \leq or \geq inequality and a dashed line for a < or >inequality. Shade the appropriate side of each line. The region where the two shaded areas overlap is the solution region for

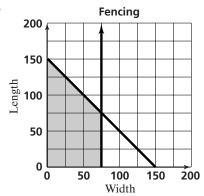

the system. 19. B

21.



24. Check students' work.

25a.
$$1.5x + 4y \le 300$$


25b.

25c. 200 tickets **25d.** 75 tickets

26a.
$$2x + 2y \le 300; x \le 75$$

26b.

26c. Answers may vary. The solutions are all of the coordinates of the points within the shaded region or on its boundary line. Samples: width of 50 ft and length of 100 ft; width of 75 ft and length of 75 ft

27a.
$$x + y = 90$$

$$0.13x + 0.03y = 0.08(90)$$

27b. 45 mL of 13% acid solution, 45 mL of 3% acid solution

28a.
$$x + y = 15$$

$$8x + 11y = 153$$

28b. 4 rolls of 24-exposure, 11 rolls of 36-exposure film

Alternative Assessment, Form C

TASK 1 Scoring Guide:

a. substitution; no solution

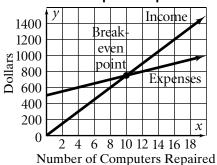
b. elimination;
$$(-2, \frac{1}{4})$$

c. elimination;
$$(-4, \frac{1}{7})$$

3 Student's selection is well reasoned and supported. Each system is solved correctly using the chosen method.

2 Student provides a correct explanation for selecting the particular method. Solutions are mostly correct.

1 Student provides a partial explanation. Solutions are partially correct.


0 Student makes no attempt, or no solution is present.

TASK 2 Scoring Guide:

a. Answers may vary. Sample: Their expenses are \$25 for replacement parts and they earn \$75 for each computer they repair; y = 25x + 500, where y represents the amount of dollars of expenses; y = 75x, where x represents the amount of dollars of income

b. Answers may vary. Sample:

Computer Repair

c. The break-even point is the point where income and expenses are equal. For the sample graph, the break-even point is (10, 750), which means that the business must repair 10 computers, taking in \$750, to recover all expenses, or break even.

3 Student thoughtfully selects income and expense items. Computations are correct, and the graph clearly demonstrates the break-even point for the equations. Explanations are clear and complete.

2 Computations are accurate, and the graph is mostly correct. Explanations demonstrate some understanding of the concepts.

1 The student's income and expense items demonstrate a minimum understanding of the issues involved. Explanations are limited and the graph contains many errors.


0 Student makes no attempt, or no solution is present.

© Pearson Education, Inc. All rights reserved.

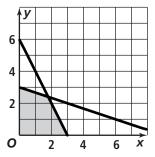
Chapter 7 Answers (continued)

TASK 3 Scoring Guide:

a.
$$2x + 2y \le 220$$

 $y \ge 70$,
where $x \ge 0$ and $y \ge 0$.

- **b.** Answers may vary. The solutions are all of the coordinates of the points within the shaded region or on its boundary line. Samples: width of 20 ft and length of 80 ft, width of 40 ft and length of 70 ft; Check students' work.
- **3** Graph is correct and student identifies a reasonable solution with appropriate explanation.
- 2 Graph is correct but explanation lacks thorough support of decision.
- 1 Graph is partially correct and limited detail is provided in the explanation.
- **0** Student makes no attempt, or no solution is present.


TASK 4 Scoring Guide:

Solve the first equation for y.

$$3y \le -x + 9$$

$$y \le -\frac{1}{3}x + 3$$

Graph each equation and shade appropriately.

- **3** Student explanations are exemplary and computations are correct. Graph is accurate.
- **2** Student explanation is lacking in clarity. Computations are correct. Graph is mostly accurate.
- 1 Written explanations are satisfactory. Computation contains errors and the graph has many errors.
- **0** Student makes no attempt, or no solution is present.

Cumulative Review

1. B **2.** D **3.** A **4.** C **5.** B **6.** D **7.** D **8.** A **9.** B **10.** C **11.** C **12.** B **13.** B **14.** Check students' work. **15.** (-2, 1)

16. $7x + 8y \le 200$ **17.** $y \ge x$; $y \ge 3$; $y \le 7$; $x \ge 0$

18. Answers may vary. Sample: y = 3x - 4.

19. about 715 airliners **20.** 6 or more games