OVERVIEW:

The following assignment contains concepts that are previously covered in prior math courses that are relevant to your up-coming Calculus school year!

This assignment will NOT be collected nor graded. The assignment should be used as a tool to recall past concepts and to stay fresh with the accurate steps to a successful year in Calculus!

There WILL be an assessment within the first 2 weeks of returning to school on the concepts you will find throughout this assignment with limited classroom time devoted to re-teaching these concepts.

If you are in need of a review of certain topics, please consult the websites dedicated to the Khan Academy and Regents Prep.

Regents Prep

Khan Academy

http://www.khanacademy.org/math/trigonometry
Solve each equation. Remember to check for extraneous solutions.

1. \(x^2 - 6x = 16 \)
2. \(81x^2 - 169 = 0 \)
3. \(5n^2 - 10n + 7 = 3n \)

4. \(\frac{12}{t} + t - 8 = 0 \)
5. \(\frac{9}{b + 5} = \frac{3}{b - 3} \)
6. \(\frac{t + 4}{t} + \frac{3}{t - 4} = \frac{-16}{t^2 - 4t} \)

Simplify each function as much as possible. State any restrictions on the domain.

7. \(f(x) = \frac{6x^5 - 9x^3 + 12x^2}{15x^4 - 3x^3} \)
8. \(f(x) = \frac{3x^3 + 5x - 2}{x^3 - 4x} \)
9. \(f(x) = \frac{x^2 + 10x + 9}{x^2 - 9} \)

Expand each expression by writing as a polynomial in standard form.

10. \((x + 4)^3 \)
11. \((x - 2)^4 \)

Factor each expression completely.

12. \(2x^2 - 20x + 48 \)
13. \(2x^2 - x - 36 \)
14. \(12x^2 + 32x + 5 \)

15. \(x^4 + 3x^3 - 25x^2 - 75x \)
16. \(3x^3 - 8x^2 + 21x - 56 \)
17. \(3x^5y(x - 1) + 2x^2y^2(x - 1) \)

18. \(3x^4 + 25x^2 - 18 \)
19. \(7x^4 - 140x^2 + 700 \)
20. \(x^4 - 1 \)

21. \(\sin^2 x + 3 \sin x + 2 \)
22. \(3 \tan^2 x - 4 \tan x + 1 \)
23. \(2 \cos^2 x \csc x - \csc x \)
Evaluate each expression based on the unit circle. All answers should be exact. (Some expressions will be undefined.)

24. \(\tan 2\pi\)
25. \(\cos \frac{\pi}{6}\)
26. \(\sin \frac{5\pi}{4}\)
27. \(\tan \frac{4\pi}{3}\)
28. \(\cos 0\)

29. \(\sec \frac{5\pi}{3}\)
30. \(\csc \pi\)
31. \(\cot \frac{7\pi}{4}\)
32. \(\csc \frac{11\pi}{6}\)
33. \(\sin \frac{3\pi}{2}\)

34. \(\sin \frac{13\pi}{3}\)
35. \(\cos \frac{7\pi}{2}\)
36. \(\tan \frac{15\pi}{4}\)
37. \(\cos \frac{23\pi}{6}\)
38. \(\csc 15\pi\)

39. \(\cos \left(-\frac{11\pi}{4}\right)\)
40. \(\tan \left(-\frac{19\pi}{3}\right)\)
41. \(\sin \left(-\frac{9\pi}{2}\right)\)
42. \(\tan \left(-\frac{21\pi}{6}\right)\)
43. \(\sec \left(-\frac{7\pi}{6}\right)\)

Simplify each expression using trigonometric identities (Pythagorean, reciprocal, quotient, and double-angle identities).

44. \(\frac{\sec x}{\tan x}\)
45. \(\frac{\cot \theta}{\cos \theta}\)
46. \(\frac{\sin(x + 2\pi)}{\cos x}\)

47. \((1 + \cos \theta)(\csc \theta - \cot \theta)\)
48. \(\sin \beta \cos \beta \sec \beta \cot \beta\)
49. \((1 - \sin^2 \alpha) \sec \alpha\)

50. \(\tan x \cos^2 x - \tan x\)
51. \(\cos^2 x (\sec^2 x - 1) + \sin^2 x (\cot^2 x - 1)\)

52. \(\frac{\sin 2x}{\sin x}\)
53. \(2 \sin \theta \cos \theta + 5 \sin 2\theta\)

Use properties of exponents and logarithms to simplify each expression.

54. \(\ln 1\)
55. \(\ln e^{3x-8}\)
56. \(\ln 5x - \ln 3x\)
57. \(\frac{1}{4} \ln 16x^4\)
Use a graphing calculator to answer the following questions.

66. \(f(x) = 3x^5 - 19x^3 + 12x^2 - 7 \)

a. Find the x-intercepts of the function.

b. Find all maxima and minima of the function.

c. For what value(s) of \(x \) does \(f(x) = 7000 \)?

67. \(f(x) = 5x^3 - 194x^2 - 244x + 160 \)

a. Find the x-intercepts of the function.

b. Find all maxima and minima of the function.

c. For what value(s) of \(x \) does \(f(x) = 3 \)?

68. Find all values of \(x \) for which \(\ln(7x - 3) + 2 = \sqrt{x^2 + 9} \)

69. Find all values of \(x \) for which \(\sqrt[3]{x} = \cos x \)

Write the equation of each line using point-slope formula.

70. \(m = \frac{2}{3} \), through \((7, -2)\)

71. through \((-2, 3)\) and \((1, 9)\)

72. \(m = -\frac{5}{4} \), \(f(3) = -1 \)

Set up and simplify the difference quotient for each function.

\[
\text{difference quotient of } f(x) = \frac{f(x + h) - f(x)}{h}
\]

73. \(f(x) = 3x - 5 \)

74. \(f(x) = x^2 + 4 \)

75. \(f(x) = 3x^2 - 8x \)
76. \(f(x) = x^2 + 6x - 2 \)
77. \(f(x) = x^3 + 7x \)

Use the given functions to evaluate each function composition.

\[
\begin{align*}
 f(x) &= \sqrt{x - 3} \\
 g(x) &= x^2 - 7x + 3 \\
 h(x) &= 2x + 11
\end{align*}
\]

78. \(f(g(x)) \)
78. \(g(h(x)) \)
79. \(h(g(x)) \)
80. \(h(f(12)) \)

Determine functions \(g(x) \) and \(f(x) \) so that each function is \(h(x) = f(g(x)) \).

81. \(h(x) = \frac{12}{3x - 5} \)
82. \(h(x) = \sqrt[3]{5x^2 - 5x} \)
83. \(h(x) = (3x + 2)^{\frac{1}{2}} - (3x - 2)^{\frac{3}{2}} \)