Multiplication Properties of Exponents

Practice 8-3

Simplify each expression.

1. $(3d^{-4})(5d^8)$	2. $(-8m^4)(4m^8)$	3. $n^{-6} \cdot n^{-9}$
4. $a^3 \cdot a$	5. $3^8 \cdot 3^5$	6. $(3p^{-15})(6p^{11})$
7. $p^7 \cdot q^5 \cdot p^6$	8. $(-1.5a^5b^2)(6a)$	9. $(-2d^3e^3)(6d^4e^6)$
10. $\frac{1}{b^{-7} \cdot b^5}$	11. $p^5 \cdot q^2 \cdot p^4$	12. $\frac{1}{n^7 \cdot n^{-5}}$
13. $(8d^4)(4d^7)$	14. $x^{-9} \cdot x^3 \cdot x^2$	15. $2^3 \cdot 2^2$
16. $r^7 \cdot s^4 \cdot s \cdot r^3$	17. $b^7 \cdot b^{13}$	18. $(7p^4)(5p^9)$
19. $2^8 \cdot 2^{-9} \cdot 2^3$	20. $(6r^4s^3)(9rs^2)$	21. $4^3 \cdot 4^2$
22. $m^{12} \cdot m^{-14}$	23. $s^7 \cdot t^4 \cdot t^8$	24. $(-3xy^6)(3.2x^5y)$
25. $5^{-7} \cdot 5^9$	26. $\frac{1}{h^7 \cdot h^3}$	27. $\frac{1}{t^{-5} \cdot t^{-3}}$
28. $f^5 \cdot f^2 \cdot f^0$	29. $r^6 \cdot r^{-13}$	30. $5^{-6} \cdot 5^4$

.

Simplify each expression. Write each answer in scientific notation.

31. $(7 \times 10^7)(5 \times 10^{-5})$	32. $(3 \times 10^8)(3 \times 10^4)$	33. $(9.5 \times 10^{-4})(2 \times 10^{-5})$
34. $(4 \times 10^9)(4.1 \times 10^8)$	35. $(7.2 \times 10^{-7})(2 \times 10^{-5})$	36. $(5 \times 10^7)(4 \times 10^3)$
37. $(6 \times 10^{-6})(5.2 \times 10^4)$	38. $(4 \times 10^6)(9 \times 10^8)$	39. $(6.1 \times 10^9)(8 \times 10^{14})$
40. $(2.1 \times 10^{-4})(4 \times 10^{-7})$	41. $(1.6 \times 10^5)(3 \times 10^{11})$	42. $(9 \times 10^{12})(0.3 \times 10^{-18})$
43. $(4 \times 10^9)(11 \times 10^3)$	44. $(5 \times 10^{13})(9 \times 10^{-9})$	45. $(7 \times 10^6)(4 \times 10^9)$
46. $(6 \times 10^{-8})(12 \times 10^{-7})$	47. $(6 \times 10^{15})(3.2 \times 10^2)$	48. $(5 \times 10^8)(2.6 \times 10^{-16})$

- 49. In 1990, the St. Louis metropolitan area had an average of 82×10^{-6} g/m³ of pollutants in the air. How many grams of pollutants were there in 2×10^3 m³ of air?
- **50.** Light travels approximately 5.87×10^{12} mi in one year. This distance is called a light-year. Suppose a star is 2×10^4 light-years away. How many miles away is that star?
- **51.** The weight of 1 m³ of air is approximately 1.3×10^3 g. Suppose that the volume of air inside of a building is 3×10^6 m³. How much does the air inside the building weigh?
- **52.** Light travels 1.18×10^{10} in. in 1 second. How far will light travel in 1 nanosecond or 1×10^{-9} s?

© Pearson Education, Inc. All rights reserved.